

Electron-Solid Interactions

- Where do they go?
 - Elastic scattering
 - Single scattering
 - Plural scattering
 - Continuous slowing down approximation
 - Multiple scattering/diffusion
- What do they do?
 - Inelastic scattering
 - Energy loss mechanisms

Elastic Scattering – Rutherford Cross-section

$$F = -\frac{e^2 Z}{4\pi\varepsilon_0 r^2} \mathbf{u}_r$$

Electrons that pass through the area $d\sigma$ are scattered through the angle θ into a solid angle $d\Omega$.

 $d\sigma/d\Omega$ is referred to as the differential scattering cross section.

Rutherford Differential Scattering Cross-Section

Consider angular momentum, resolve motion into horizontal and vertical components. At the start of the trajectory v_h is zero, at the end v_h =vsin θ .

$$\frac{d\sigma}{d\Omega} = \frac{e^4 Z^2}{4(4\pi\varepsilon_0)^2 m^2 v^4} \frac{1}{\sin^4(\theta/2)}$$

- Scattering proportional to \mathbb{Z}^2
- Scattering forward peaked
 - Singularity at $\theta = 0$

Elastic Scattering – Other Cross-Sections

- Need to account for screening of nuclear charge by atomic electrons
 - Quantum mechanical treatment considers superposition of plane wave and spherical scattered wave

Plane wave: $\psi = \psi_0 e^{2\pi i k_0 z}$

Scattered wave: $\psi = \psi_0 f(\theta) \frac{e^{2\pi i k_0 z}}{r}$

$$\frac{d\sigma}{d\Omega} = \left| f(\theta) \right|^2$$

- $f(\theta)$ is the angle dependent scattering amplitude and represents Fraunhofer (far-field) diffraction by the atomic potential
- Numerous cross-sections derived according to form of potential

Screened-Rutherford Cross-Section

$$\frac{d\sigma}{d\Omega} = \frac{4Z^{2}(1 + E/E_{0})}{a_{H}^{2}} \frac{1}{\left[1 + (\theta/\theta_{0})^{2}\right]^{2}}, \theta_{0} = \frac{\lambda Z^{1/3}}{2\pi a_{H}}$$

 θ_0 = characteristic scattering angle, typically 10's mrad at 100 kV

Total Elastic Cross-Section

$$\sigma_{elastic} = \frac{Z^{4/3} \lambda^2 (1 + E / E_0)^2}{\pi}$$

Cross-section *increases* as E *decreases*Characteristic angle *increases* as E *decreases*

Mean-Free-Path

 $N = atoms/unit\ volume$

n = atoms/unit area

 $n\sigma$ = scattering area fraction

 $N_{A} = Avogadro's number$

A = Atomic number

$n = \frac{N_A \rho}{L} t = Nt$	
A	
$dI = -IN\sigma dz$	
$I = I_0 e^{-N\sigma t} = I_0 e^{-t/\Lambda}$	
$\Lambda = \frac{1}{N\sigma} = Mean\ Free\ Path$	
$P(m) = \frac{(t/\Lambda)^m}{m!} e^{-t/\Lambda}$	

Element	Z	$\Lambda_{50\mathrm{kV}}(\mathrm{nm})$	Range (µm)
C	6	83	22.6
Al	13	49	16.7
Cu	29	10.7	5.1
Ag	47	7.7	4.3
Au	79	4.6	2.3

 $P(0) = e^{-t/\Lambda} = fractionunscattered$

Angular Distribution & Beam Broadening

$$I_{1}(\theta)d\Omega = I_{0}n\frac{d\sigma}{d\Omega}d\Omega = I_{0}N\sigma t\left(\frac{1}{\sigma}\frac{d\sigma}{d\Omega}\right)d\Omega = I_{0}\frac{t}{\Lambda}S_{1}(\theta)d\Omega, d\Omega = 2\pi\sin\theta$$

$$\int S_1(\theta) 2\pi \sin \theta d\theta = 1 \quad \Leftarrow \text{ Normalized single scattering function}$$

$$S_m = S_{m-1}(\theta) \otimes S_1(\theta)$$

$$I(\theta)d\Omega = I_0 d\Omega \sum_{m=0}^{\infty} \frac{\left(t/\Lambda\right)^m}{m!} e^{-t/\Lambda} S_m(\theta)$$

$$\overline{\theta^2} = \frac{t}{\Lambda} \overline{\theta_1^2}, \quad r = \theta z$$

Approximate $S_1(\theta) \approx e^{-\theta^2/\overline{\theta_1^2}}$, assume $I(r) \propto e^{-r^2/\overline{r^2}}$

$$\overline{r^2} = \frac{2}{3} \frac{\overline{\theta_1^2}}{\Lambda} t^3, \quad r_{rms} \propto t^{3/2}$$

Appropriate for m< 25

Continuous Slowing Down Approximation

• Energy transfer, W (<< E, incident electron energy), occurs through Coulomb interaction between incident electrons and atomic electrons. Mean energy loss/path length is $-dE_m$. Stopping power, S:

$$S = \left| \frac{dE_m}{ds} \right| = NZ \int_{W_{\min}}^{W_{\max}} \frac{d\sigma}{dW} W dW = \frac{2\pi e^4 N_A \rho Z}{\left(4\pi \varepsilon_0\right)^2 AE} \int_{b_{\min}}^{b_{\max}} \frac{db}{b}$$

$$= \frac{2\pi e^4 N_A \rho Z}{\left(4\pi \varepsilon_0\right)^2 A E} \ln\left(\frac{E}{J}\right), \quad J = 11.5 Z, \quad Z \le 6$$

Range,
$$R \propto E^n$$
, $\frac{1}{Z^m}$, $1.3 \le n \le 1.7$, $m \approx 1$

Diffusion - Everhart's Single Scattering Model

- Electron energy decreases with depth as $v = (c_T \rho z v_0^4)^{1/4}$
- Intensity decreases as $dI(z) = N_A \rho \sigma \pi / (2A) I(z) dz$
- Electrons are backscattered by single scattering through angles π - θ_{min} < θ < π

$$\eta = \int_{0}^{0.5} \frac{N_A \rho}{A I_0} \sigma(\theta_{\min}) I(z') dz' \approx \frac{0.012Z - 1 + 0.5^{0.012Z}}{0.012Z + 1}$$

η increases with increasing Z, R decreases with increasing Z. Character of proximity effect changes with atomic number

Monte-Carlo Simulation

Note changes in horizontal and vertical scales as the atomic number increases: Si 14, Cu 29, Au 79

Scattering in Gas Targets

Ludwig Reimer, "Scanning Electron Microscopy", Springer-Verlag (1985)

Inelastic Scattering

- Energy loss occurs through a variety of mechanisms
 - Molecular oscillations/phonons
 - $\Delta E = 20 \text{ meV} 1 \text{ eV}$
 - Conduction/valence electrons
 - Plasmons
 - Inter- or Intra-band transitions
 - $\Delta E = 1 \text{ eV} 50 \text{ eV}$
 - Core electrons
 - Ionization of inner shell electrons
 - X-rays
 - Auger electrons
 - $\Delta E_K = 110 \text{ eV (Be)} 80 \text{ keV (Au)}$

Described by dielectric theory - related to optical constants of material. Electron energy-loss spectra and those for light and x-rays are related

Energy loss in C is \approx 0.24 eV/nm at 100 keV

Plasmon & Optical Losses I

$$m^* \frac{d^2 \mathbf{X}}{dt^2} + m^* \gamma \frac{d \mathbf{X}}{dt} = -e \mathbf{E}$$

$$\mathbf{x} = \frac{e}{m^* \omega^2} \frac{\omega^2 - i\omega \gamma}{\omega^2 + \gamma^2} \mathbf{E}$$

$$\mathbf{P} = -eN_e \mathbf{x} = \varepsilon_0 \chi_e \mathbf{E}, \quad \varepsilon = \varepsilon_0 (1 + \chi_e)$$

$$\varepsilon(\omega) = \varepsilon_1 + i\varepsilon_2 = \varepsilon_0 \left(1 - \frac{N_e e^2}{m^* \varepsilon_0} \frac{1}{\omega^2 + i\omega\gamma} \right)$$

$$\Rightarrow \varepsilon_{1} = \varepsilon_{0} \left(1 - \frac{\omega_{pl}^{2}}{\omega^{2}} \frac{1}{1 + (\gamma/\omega)^{2}} \right), \quad \varepsilon_{2} = \varepsilon_{0} \frac{\gamma}{\omega} \frac{\omega_{pl}^{2}}{\omega^{2}} \frac{1}{1 + (\gamma/\omega)^{2}}$$

Plasma frequency:
$$\omega_{pl} = \sqrt{\frac{N_e e^2}{\varepsilon_0 m^*}}$$
 i.e. $\gamma = 0$, Plasmon energy: $\Delta E_{pl} = \hbar \omega_{pl}$

Plasmon & Optical Losses II

$$m^* \left(\frac{d^2 \mathbf{x}}{dt^2} + \gamma \frac{d \mathbf{x}}{dt} + \omega_b^2 \mathbf{x} \right) = -e \mathbf{E}$$

$$\varepsilon(\omega) = \varepsilon_0 \left(1 + \frac{N_e e^2}{\varepsilon_0 m^*} \frac{1}{\omega_0^2 - \omega^2 - i\omega\gamma} \right)$$

Introduce oscillators with other characteristic frequencies, ω_b , to represent bound electrons. Resonances occur when $\omega = \omega_b$. Passage of high-energy electron results in frequency pulse that can excite many resonances.

Dielectric Theory

 $\rho = e\delta(x - vt)$

Optical constant:
$$\varepsilon = \varepsilon_1 + i\varepsilon_2 = (n + ik)^2$$

Energy dissipation:
$$\frac{dW}{dt} = \mathbf{\dot{E}.D}$$

Electron:
$$\rho = e\delta(x - vt)$$

$$div\mathbf{D} = \rho$$
, $\mathbf{E} = \mathbf{E}_0 e^{-i\omega t}$, $\mathbf{D} = \varepsilon \varepsilon_0 \mathbf{E}$

$$\Rightarrow \frac{\overline{dW}}{dt} = \varepsilon_0 \varepsilon_2 \frac{\omega |\mathbf{E}_0|^2}{2} = \frac{1}{\varepsilon_0} \frac{\varepsilon_2}{|\varepsilon|^2} \frac{\omega D_0^2}{2} = \frac{1}{\varepsilon_0} \frac{\omega D_0^2}{2} \operatorname{Im}(-1/\varepsilon)$$

Note:
$$\varepsilon \to f(\omega)$$

$$\frac{d^2\sigma}{d\Delta E d\Omega} = \frac{1}{\pi^2 a_H m v^2 N_e} \frac{\text{Im}(-1/\varepsilon)}{(\theta^2 + \theta_E^2)}, \quad N_e = electrons/unit \ volume, \quad \theta_E = \frac{\Delta E}{2E}$$

 $\sigma_{\rm inel} \approx 20 \ \sigma_{\rm el}/Z$

20 eV loss at 100 keV gives a θ_E of 0.1 mrad

Method of Virtual Quanta

Energy Transfer

Electrons become bluer and dimmer as their energy increases

EELS Spectrum (SiN)

